Aidypaupua avagopdg: https://astronuclphysics.info/Gravit5-EvoluceVesmiru.gif

A . 2 The present Heat
Greationict Formation of » death
g ! i hydrogen first stars and REIere :
Primordial shd hoha galaxies 4\&
2 _ Quarks+Gluons pucleosynthesis atoms | | :
1091y Inflationary W i : Thedark
K expansion Hadrons
5x10¥ 1y - i 1
107ty
mkl{; 1 2
150 km 4 : :
10 cm A Big : F Y
‘ [\x.v e Qua
2 1.1} Sheptoguarks | S5
5 23| £ %,
£ e Quarks | g
<0 i}:‘".’& Ghions | @ ! ; quantum
; WﬁQuark-gluon Birons | Hebam nevaporation
o \ lasma 9
2 b P @ Nuclei | ' Dituted
a LY Leptons \ 7 radi
10 cm
150km 4 \ / Photons

101y

Hadronic

\/

Expansion

107y o, era
5x10%1y 4 e
~10%ly 4 Early hot universe
¥ Accelerated
Sa expansion
v a
(ly=light year) T T T T T T >t
Time: 10435 10-%5s 10s 10s 3000 years 2x10%years 14x10%years 1080 years
Temperature: 1032 1027°K 1013 5x10°¢ 3000°K 30°K 2:T°K 10-10°K
Energy: 10'* 10'5GeV 100 MeV 200 keV 04eV 0,1eV 10%eV ~0

Apdon: Atrapxég. Mia nxoTroinon yia Tnv 1I0Topia Tou CUUTTAVTOG.
HyoTtroinon Tpiwv KOPBIKWY TTUAWVWV:

1. H"apxn"
2. H ameAeuBépwaon Tou WTOG atTd TNV UAN
3. To anuepa.

Aedopéva: Ze Eva AoyapiBuIKd kapTeaiavo ypd@nua PE Ta Tpia auTd XPOVIKG onuEia
(Me "apxA" TNV TouR TWV agdvwy Kal Tov agova X=Xpovog) TTapacTaivovTal KABeTa ol
TIMEG: BEPUOKPOCIAG, EVEPYEIAG OTIGC TTAPATIAVW XPOVIKEG OTIYUES 1, 2 Kal 3.

ZKETTIKG: O oxnuatiopog Tpiwv cuyXopdiwv (1,2,3) Tpayuatotroienke pe Baon Tig
TINEG TTOU ATTEIKOVICOVTAI OTOV OPICOVTIO dgova.

(y=lightyeer) | T T T T T T T >
Time: 1035 10-35s 108s 10s 3000 years 2x10%years 14x10%years 1080 years
Temperature: 102 107K 1012 5x108 3000°K 30°K 2,7°K 10-10°K
Energy: 10" 10'5GeV 100 MeV 200 keV 04eV 0,1eV 104 eV =0

MNa TIG BUVANIKES TV CUYXOPDIWY ATTOBWOANE TIG CUYXOPDIES XPNOIMOTTOIWVTAG TA
TEOOEPQ XpWHATA — QUVAMIKES TOU NXou. KOKKIVO, Ka@E, ITTAE Kal TTPACIVO (aTTd TO
Forte otadiakd £éwg 1o Piano).

MpwTO6KOAAO nxoTTOIiNONG:

H avTioToIXia pouoIkwv @BOYYwWV Kal TIHWV TTPOCdIopioTNKE Pe BACN TO TTAPATTAVW
ypdonua kail "A posteriori" (Ta dedouéva £xouv 00¢i TTpIV TNV nxoTroinan).
AtrotéAeopa: ATTOd0ON TPIWV CUYXOPDIWV.

Aidpkelo KOPpATIOU: 2 AeTTTA

Opyava: 4 puadntég eyxopdwy (Mupvaoio/AUKeIO).

https://astronuclphysics.info/Gravit5-EvoluceVesmiru.gif
https://drive.google.com/file/d/16gwCiofcHtycR9Ovm9I9MlRfNjTOnv-o/
https://drive.google.com/file/d/16gwCiofcHtycR9Ovm9I9MlRfNjTOnv-o/

ONO G~ WNE

NAPTITOYPA:

H ak6AouBn ypa@ikr] TTapTITOUPa KATAOKEUAOTNKE ATTO excel ue dedopéva Kal
oladikaaia AoyapIBuIKAG avaywyrg aTnv dwWdEKAPOoYyN XPWHATIK KAiJaKa TTOU
mPoNAABe e TN Xprion Texvntic Nonuoouvng g AyyAIKr YAwooa

HXOIIOIHEH 1.0 / 24 Senteufpiov 2024
1 2 3 4 5 6 7 8 9 10 1 12 13 1 15 16 by 18 19

PE# \
NTO#

N:m //

=== XPONOL

mf

— EEATIAQZH TOY
mp TYMIANTOE

ENEPTEIA
p

DOOIMTOI XPOMATIKHE KAIMAKAZL

pp ==GEPMOKPAZIA

PPP

PPPP

XPONOE HXONOIHEHE

KAIK 0w via peyéBuvaon

YNOMNHMA

Aéovag X : 19 xpbdvol poucikoU dpwuEvou
Atovag Y : 12 ®Bdyyol TNG XpwHaTIKNAG KAipakag = ZOA /ZON' A kKAipaka Suvapikig

Xpbvog o€ €N

0.000317
0.000317

0.0000000000000317

0.000000317

3000

200,000,000

14,000,000,000
1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000
,000

https://drive.google.com/file/d/1ID7l8VwmyqUT87ZW-peMwYPDEa02SqT5/view

NogaswdbE

NN E

ONOOAWNE

EEATAwoN TOU GUPTTAVTOG O€ WETPIKA KAipaka

0

10 cm

150 km

10 Light years

1077 Light years
5* 1077 Light years
10750 Light years

Evépyeia oe HAeKTPOVIOBOAT (eV)

1079 GeV
10715 GeV
100 MeV
200 KeV
0,4 eV
0,1eV
1074 eV
OeV

O¢puokpacia oe KEABIV (K)

10732 K
10727 K
10M3 K
5*10"9 K
3000 K
30K
2,7K
10710 K

AIAAOI'OX ME TN
TIME

| have the following measurements:

1. 0.000317
2.0.000317

3. 0.0000000000000317

4.0.000000317

5. 3000

6. 200,000,000

7.14,000,000,000

8.
1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0
00

If T use a ruler to put the 1st measurement as equal to ‘0’ cm and the 8th as equal to
‘13’ cm then can you distribute the rest of the measurements in between ‘0’ and ‘13’
in the ruler?

To ChatGPT sgine:
ChatGPT

To distribute the given measurements between 0 cm and 13 cm, where the first
measurement corresponds to 0 cm and the last corresponds to 13 cm, we need to scale
each of the values proportionally to this range.

Step-by-Step Process:

Step-by-Step Process:

0 —51

1. Logarithmic Scaling: The values range from extremely small (3.17 x 1) to extremely large (

10%%). To distribute them evenly on a ruler, it's best to use a logarithmic scale because of the

large range of values.

2. Normalize the Values: Since we want the first value to be at 0 cm and the largest at 13 cm, we

can normalize the values between these two extremes using logarithms.

Formula:

For each value, we can calculate its position on the ruler using the formula:

logyg(z;) — logig(1) % 13

logo(zs) — logg(z1)

position =

; is the value you want to scale.

= 3.17 x 10~°! (smallest value).

= 10% (largest value).

The result will give the position in cm on the ruler.

Let me calculate the scaled positions of each value on the 0 to 13 cm ruler for you.

It seems that I'm currently unable to run the necessary calculations. However, you can
follow these steps in your own environment to calculate the ruler positions:

Step-by-Step Calculation

1. Take the logarithm of each value: You can use base 10 logarithms
(logarithmic scale) for the large differences between values.

2. Normalize the values: Use the formula provided earlier to distribute the
values between 0 cm and 13 cm on the ruler.

Here’s the Python Code you can use:

python
AVT Lypaen KOS LK
import numpy as np

Given values

values = [

3.17e-51, # 1lst measurement

3.17e-43, # 2nd measurement

3.17e-14, # 3rd measurement

3.17e-7, # 4th measurement

3000, # 5th measurement

2e8, # 6th measurement

14e9, # 7th measurement

le60 # 8th measurement (largest value, corresponds to 13
cm)

]

Logarithmic scaling
log values = np.loglO (values)

Normalize positions between 0 and 13 cm

min log = log values([0]
max log = log values|[-1]
scaled positions = (log values - min log) / (max_log - min log) * 13

Print the positions
for i, pos in enumerate (scaled positions):

print (f"Measurement {i+1} position: {pos:.2f} cm")

This will calculate the position on the ruler for each of your values, scaled
logarithmically between 0 and 13 cm. Let me know how it goes or if you need any
further clarifications!

Einec:

| calculated on an online app. Can you verify: Measurement 1 position: 0.00 cm
Measurement 2 position: 0.94 cm Measurement 3 position: 4.35 cm Measurement 4
position: 5.18 cm Measurement 5 position: 6.35 cm Measurement 6 position: 6.92 cm
Measurement 7 position: 7.13 cm Measurement 8 position: 13.00 cm ?*

To ChatGPT sgine:

ChatGPT

Your calculated positions look very reasonable based on a logarithmic distribution,
and they align well with the pattern we expect for values that vary over such a large
range. Here's a breakdown:

1. Measurement 1 (smallest value) should be at 0.00 cm — correct.

2. Measurement 8 (largest value) should be at 13.00 cm — correct.

3. Intermediate measurements, especially those much smaller than the largest
value, will tend to cluster towards the lower end of the scale, which your
results show, such as:

o Measurement 2: 0.94 cm — makes sense, still close to the smaller
end.

o Measurement 3: 4.35 cm — showing the expected large jump in
value.
Measurement 4: 5.18 cm — positioned close to Measurement 3.
Measurement 5: 6.35 cm, Measurement 6: 6.92 cm, and
Measurement 7: 7.13 cm — all moving closer together as the values
increase.

This distribution fits the logarithmic scaling expectation.

Your calculations seem correct! Let me know if you need further assistance!

EXPANSION

Eineg:

I have the following measurements:

! Ta yp@pate Twy eMONUAVIEQY aVTITTOLX0UY 0T0 Ypddnua Tou SlaypauuaTos

.0cm

2. 10 cm
. 150 km
. 10 Light years

. 10~7 Light years
. 5* 10~7 Light years
. 10750 Light years

If T use a ruler to put the 1st measurement as equal to ‘0’ cm and the 7th as equal to
‘13’ cm then can you distribute the rest of the measurements in between ‘0’ and 13’
in the ruler?

To ChatGPT sgine:

ChatGPT

To distribute these measurements between 0 cm and 13 cm on the ruler, we will follow a logarithmic

scaling approach, as we are dealing with measurements that vary dramatically, from 0 em to 10°°

light years.

Step-by-Step Process:

Step-by-Step Process:

1. Logarithmic Scaling: We will scale the values logarithmically to accommodate the vast

differences in magnitude.
2. Normalize the Values: We'll normalize the logarithms of these values between the minimum
value (0) and the maximum value (10°° light years) to fit between 0 cm and 13 cm on the ruler.
Formula:

For each value, we can calculate its position on the ruler using the formula:

logyo(z;) — logyo(x1) % 13
logyo(z7) — logyg(z1)

position =

Where:
Z; is the value you want to scale.

21 = 0 cm (smallest value).

z7 = 10°0 light years (largest value).

The result will give the position in cm on the ruler.

I will now calculate the scaled positions for each measurement.

It seems I forgot to import the required libraries for the calculation. Here’s the correct
Python code you can run in your environment:

python
AVT LYPOQY KOO LK
import numpy as np

Given values (in cm where necessary)
We use a small non-zero value for 0 cm (x 1) because log(0) is
undefined in a logarithmic scale.

values = [
le-10, # 0 cm (small non-zero value to avoid log(0))
10, # 10 cm
150000, # 150 km in cm
9.461le+17, # 10 light years in cm (1 ly = 9.461le+17 cm)
9.461le+23, # 1077 light years in cm
4.7305e+24, # 5 * 107”7 light years in cm
9.46le+67 # 10750 light years in cm

]

Logarithmic scaling
log values = np.loglO(values)

Normalize positions between 0 and 13 cm

min log = log values([0]
max log = log values[-1]
scaled positions = (log values - min log) / (max log - min log) * 13

Print the positions
for i, pos in enumerate (scaled positions):
print (f"Measurement {i+l} position: {pos:.2f} cm")

This code will calculate the position of each value on a ruler scaled from 0 cm to 13
cm. Feel free to run this code in your local environment or an online Python
interpreter! Let me know if you need further help!

Eineg:

Here are the results:

Measurement 1 position

Measurement 2 position

Measurement 3 position
Measurement 4 position
Measurement 5 position
Measurement 6 position
Measurement 7 position

Can you please verify?

To ChatGPT sgine:

ChatGPT

Your results look good, and they seem to follow the expected trend of logarithmic
scaling. Here's a quick verification of the logic:

Breakdown of Key Observations:

. Measurement 1 (0 cm): The smallest value is comrectly positioned at 0.00 cm.

2. Measurement 7 (largest value, 10°0 light years): The largest value is positioned at 13.00 cm, as

expected.

3. The intermediate values, especially the ones on the scale of kilometers to light years, fall

between these points in a logical progression:
Measurement 2 (10 cm): at 1.83 cm.
Measurement 3 (150 km): at 2.53 cm.

Measurement 4 (10 light years): at 4.66 cm.

Measurement 5 (107 light years): at 5.66 cm.

Measurement 6 (5 X 107 light years): at 5.78 cm.

General Conclusion:

These results are consistent with the use of a logarithmic scale, where values that are
closer together in magnitude (such as Measurements 5 and 6) are also closer in terms
of their positions on the ruler.

Your values look accurate! Great job on the calculations. Let me know if you'd like to
explore further!

ENERGY

Einec:

Let’s do the same with Energy measurements in eV:
. 10719 GeV
2. 10415 GeV
. 100 MeV
. 200 KeV

.04 eV

. 0,1V
1004 eV
. 0eV

If T use a ruler to put the 1st measurement as equal to ‘0’ cm and the 8th as equal to
‘13’ ¢cm then can you distribute the rest of the measurements in between ‘0’ and ‘13’
in the ruler?

To ChatGPT sgine:

ChatGPT

To distribute these energy measurements between 0 ¢cm and 13 cm on the ruler, we’ll again use a
logarithmic scaling approach because the energy values span a wide range (from 10 GeV to

10~ eV).

Conversion to eV:
Since the measurements are in different units, we first need to convert everything to electronvolts
(eV):

+ 1GeV =10V

o 1MeV =10%eV

» 1KeV =10%eV

Converted Values:
. 109 GeV = 108 eV
. 105 GeV = 10 eV
3. 100 MeV = 108 eV

. 200KeV = 2 x 10° eV
. 0.4eV

. 0.1eV

. 107%eV

. DeV

Logarithmic Scaling:

Logarithmic Scaling:

Now, we'll use logarithmic scaling to distribute these values between 0 cm (corresponding to

10?8 V) and 13 em (corresponding to 0 V) on the ruler.

I'll calculate the positions for you.

It seems | forgot to import the necessary libraries for the calculation. You can run the
following Python code to calculate the positions on your own:

python
AVT LYPOQY KOO LK
import numpy as np

Given energy values in eV
values eV = [

le28, # 10719 GeV in eV (1 GeV = 1079 eV)

le24, # 10715 GeV in eV

les, # 100 MeV in eV

2e5, # 200 KeV in eV

0.4, # 0.4 ev

0.1, # 0.1 ev

le-4, # 107-4 ev

le-10 # Small non-zero value to represent 0 eV (to avoid
log(0))

]

Logarithmic scaling
log values eV = np.logl0O(values_eV)

Normalize positions between 0 and 13 cm

min log eV = log values eV[0]

max log eV = log values eV([-1]

scaled positions eV = (log values eV - min log eV) / (max log eV -
min log eV) * 13

Print the positions
for i, pos in enumerate(scaled positions eV):
print (f"Measurement {i+1l} position: {pos:.2f} cm")

This will output the positions for each energy measurement, scaled between 0 cm and
13 cm. Let me know how it goes, or if you'd like further help!

TEMPRATURE

python
AVT LYPOQY KOO LK
import numpy as np

Given temperature values in Kelvin (K)
values temp = [

le32, # 10732 K
le27, # 10727 K
lel3, # 10713 K
5e9, # 5 * 1079 K
3000, # 3000 K

30, # 30 K

2.7, # 2.7 K
le-10 # 107-10 K

]

Logarithmic scaling
log values temp = np.logl0(values temp)

Normalize positions between 0 and 13 cm

min log temp = log values temp[0]
max log temp = log values temp[-1]
scaled positions temp = (log values temp - min log temp) /

(max log temp - min log temp) * 13

Print the positions
for i, pos in enumerate (scaled positions temp) :
print (f"Measurement {i+1l} position: {pos:.2f} cm")

